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ABSTRACT

The resistance and mobility functions which completely characterize the
linear relations between the force, torque and stresslet and the translational
and rotational velocities of two spheres in low-Reynolds-number flow have been
calculated using a boundary collocation technique. The ambient velocity field
is assumed to be a superposition of a uniform stream and a linear (vorticity
and rate-of-strain) field. This is the first compilation of accurate
expressions for the entire set of functions. Our calculations are in
agreement with earlier results for all functions for which such results are
available. Our technique is successful at all sphere-sphere separations
except at the almost-touching (gaps of less than .005 diameter) configuration.

New results for the stresslet functions have been used to determine
Batchelor and Green's (1972) order o coefficient in the bulk-stress (7.1
instead of their 7.6). The two-sphere functions have also been used to
determine the motion of a rigid dumbbell in a linear field. We also show that
certain functions have extrema. The source (FORTRAN) code is furnished in the
appendix. .
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SIGNIFICANCE AND EXPLANATION

The calculation of hydrodynamic interactions between particles is needed

for the understanding and control of many natural and manufacturing processes,

for instance, those involving sedimentation, colloidal stability, aspension

rheology, and cloud formation. A fundamental approach to these problems often

requires detail information on the hydrodynamic interactions between two

spheres, that is, the forces, torques and stress dipoles induced by the

particle motions and the ambient velocity. Until now, the available

information was incomplete.

This report furnishes the complete solution of the problem using a

collocation approach. The results are in excellent agreement with all earlier

solutions for special cases of the complete problem. The source (FORTRAN)

code has been included.
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THE RESISTANCE AND NOBILITY FUNCTIONS OF TWO EQUAL
SPHERES IN LOW REYNOLDS NUMBER FLOW

Sangtae Kim
* 1 ,2 and Richard T. Mifflin 1,3

1. Introduction

In this work we have used the boundary collocation technique to calculate the

set of functions which describe the hydrodynamic interaction between two rigid

spheres in low-Reynolds-number flow. Such information is needed in

theoretical investigations of the behavior of suspensions of small

(sub-micron) particles as shown in the review articles by Batchelor (1974) and

Jeffrey and Acrivos (1976). Specific applications are found in studies of

sedimentation velocities (Batchelor 1972), rheological properties (Batchelor

and Green 1972 ), Brownian diffusion (Batchelor 1976) and fixed-bed

permeabilities (Howells 1974). In all cases the specific information that is

required is the linear relation between the rigid-body motion of the spheres,

a + a x(x-x )

in an ambient field, U(x) - U Q Oxx + Eex on one hand and on the other hand

the force, torque and stresslet (moment) exerted by each sphere on the fluid.

The notation is as follows: U a and _ a are the translational and rotational

velocities of the sphere centered at x., a-1,2; U , _ and E are the uniform

stream, constant vorticity and rate-of-strain fields. The force, torque and

stresslet on each sphere are given by the following integrals of the stress,

2' over the surface of sphere a:

F -f S  2.n dA,

Ta - S (X-Xa)x(2-n) dA,

This report is also available as Rheology Research Center Report #94.
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C S p [ )dA.

n is the outward normal vector for the surface.

Because of the linearity of the governing equations, the solution of our

hydrodynamic interaction problem (with equal spheres) is completely specified

* by 19 independent scalar functions. We present here what we believe to be the

first complete solution of this problem. We emphasize that our method can be

reduced to a 60-line routine that, with the help of subprograms for the

special functions (Legendre functions) calculates the entire collection of

functions. Others have solved various subsets of this problem using

bispherical coordinates (Stimson and Jeffery 1926; Goldman, Cox and Brenner

1966; Lin, Lee and Sather 1970), method of reflections (Happel and Brenner

1965) and lubrication theory (O'Neill and Majumdar 1970), as reviewed by

Jeffrey and Onishi (1984). These authors also present a comprehensive

solution of the important subset involving the force and torque in an ambient

*, field composed of a uniform stream and vorticity field, using the

twin-multipole variation of the method of reflections.

A more detailed discussion of hydrodynamic interaction is presented in

*following subsections where we review the resistance and mobility functions.

In Section 2, we show how the boundary collocation technique of Gluckman

et. al. (1971) and Lamb's velocity representation can be used to solve the

boundary value problem associated with each resistance function. Formulae

which relate the resistance functions to the coefficients in the velocity

representation are found in Section 3. We state our principal results in

Section 4 and illustrate sample applications in Section 5, including the

correction of Batchelor and Green's (1972b) result for the coefficient of the
2
c term in the bulk stress (7.1 instead of their 7.6) and the hydrodynamic

functions for the rotation of a rigid dumbbell in a linear field. We have

placed our source code and sample calculations In the appendix.

% U. % %~ %%
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1.1 The Resistance Problem

Following Brenner and O'Neill (1972), we define the resistance problem as that

in which the force, torque and stresslet are to be determined for a specified

particle motion in the ambient field. The linearity of the Stokes equations

permits the expression of the forces, torques and stresslets in the following

matrix form:

El A11 A 12 -11 i12 -11 -12 U

-1 A A22 B2l 02 B 2 a22 u

11M M a a-2 A A2 2  _21 =22 -21 -22

-1 B. B C
T 11 12 11 12 -11 -12

-S G G H M M_
1 22 21 22 -21 -22

S2- -

The 6X6 matrix of tensors has been named the grand resistance matrix by

Rallison (1977).

;' We have followed the development and notation in Jeffrey and Onishi

(1984) and Jeffrey (1984) throughout this section. A, B, and C are second

rank tensors, G, H and H are third rank tensors and the M tensors are

fourth rank tensors. We shall see below that there are inter-relations

* between certain tensor pairs. These pairings are highlighted by using the

same letters and the symbol, -.

We first reduce the number of independent tensors by using properties

that are independent of the particle geometry. The reciprocal theorem of

Lorentz (1906) can be used to show that the resistance matrix is symmetric

(Brenner and O'Neill 1972 and Hinch 1972), i.e.:

ACj Aso P8 Boa, COO =co (1.1a,b,c)

.4 %. ' * ~ .~ % %4" "' " " - " " " - ' " %' " - , -. - .- . - e.--
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ao - a -0 a.. = G=H' - k=ki (1 .d,e~f)
ijk Gkij' ijk Hkij' Mijkt klJ

We may impose additional relations because S and E are symmetric and

traceless. The condition on S permit us to set
Nm

G a GaB H 0 HaB MaB Mas
iJk jik' jk = Jik' ijkl jikt' (1.2a,b,c)

ik 0, ilk - 0, M i i 0. (1.2d,e,f)

while the conditions on E require that

ijk ikj' iJk - ikJ' Mijk (1 .3a,b,c)

Ga s . of Has 0 , MaoG. l =0 Ha-jkk - 0. (1.3d,e,f)

The symmetry of the two-sphere geometry implies that each tensor

satisfies:

P CR) - P(3-a)(3-0)(-R) (1.4)

where R=x 2-x is the center-to-center vector. Finally, the axisymmetry about

the sphere-sphere axis implies that each tensor can be decomposed into

expressions involving no more than three scalar functions (Brenner 1963,

1964). Jeffrey and Onishi (1984) designate these scalar functions as X P R),
as

P P 0
Y (R) and Z (R) with P, a and a denoting the appropriate tensor P They

reserve the letter X for those funtions that arise from axisymmetric flows.

(More specifically, we shall see later that the X, Y, and Z functions arise

from boundary conditions involving spherical harmonics with the azimuthal

number, m, equal to 0, 1 and 2 respectively). Thus, with d - R/R:

asAB X dd (6 j-dd (1.5a)

B B =Y jB d (1.5b)
i j ji asC IjkdkP

V--4 A . .... . .
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, ij a x 00 d I di + Y a$(6 ij-di d), (1 .5c)

ijk -kj - .)d Gdk a Y di + d d - 2d ddk) (.5d)

Has "H$aJ Y H(d d1 + dikd) (1.5e)
ujk kij asIJk i jkf. L

Mao 2x (d d- )( dL 0.5)
iJki 2 a ( - 3ij )(dd- 3kL) (i .f)

o8+ ( d 6 d+ d 6 d + d 6 dt d 6id - 4d d d d )ILk j ikdk dI + jkk

+ 1'M (6ik 6 + 1k6  - 66j 6kl + dtd. 6kL + 6t.dkdi

- di 6jk - d. 6 dk - di kdt - d 6ikd + aid.dkd ).

We now nondimensionalize these scalar functions so that they become

functions only of the dimensionless separation parameter R/a. The

dimensionless functions will be denoted with the symbol ".

AcB 6.aao, 0 . 41.ra 2 , Ca'  - 8va3,;a (1.6a-c)

a$ - 4 va- 2 ̂ B 01B -8-a H . (1.6d-f )

G G H a

The dimensionless functions for the tensors on the diagonal of the grand

resistance matrix will approach unity for large R because the scales were

ochosen by considering the single-sphere result.

1.2 The Mobility Problem

Following Batchelor (1976), we define mobility problems as those in which the

particle forces and torques are prescribed in the ambient field and the

particle motion and stresslet are the unknowns. The formulation of the

mobility problem is rather awkward from a mathematical perspective since the

4; boundary conditions involve the unknowns, but in many problems the forces and

torques are the prescribed physical quantities and the particles must move

or~ -c cr

% Z..



accordingly. In later sections, we shall first solve the resistance problem

and then use the relations between the mobility and resistance tensors to

solve the mobility problem. Again, the linearity of the Stokes equation

allows us to write:

U IU(Xl )  a 11 a 12 ;11 ; 12 -1 F1

UU(x2) 21 22 -21 ;22 -2 1
a2- a bF

b 1 1  b1 2  11 12 1 -1T

21 b22 21 c22 -2 -T

a - 2~
1. 11 12 h11 h12 1 E

,' u-s2  ~21 22 h2 1  h2 2  2

'a.,*"p

As in the resistance problem, the number of unknowns can be reduced by

applying the reciprocal theorem, and the consequences of S and E being

symmetric and traceless. Thus:

a - a Sa - boa c =cj, (l.7a,b,c)

Sa a 2a R h + 2a (1.Td,e)
.iJk = gJkl gJku' hJk Jkl jkt'

1 2  1  2... ;''. mi~k + mik -Mki + Mki. (1.7f)
liki ijki kiij k9.ij

and equations which are analagous to (1.2) and (1.3).

As before, the two-sphere symmetry allows the following decompositions:

aij a i ya 6 ijdd) (1 .8a)

b as b d (1.8b)

cij - Xadidj + Yc (6jdid j ) ,  (1.8c)

) dx(dd--  1 y)+g + d i - 2ddjd (1.8d)
-jk i0 1 ij k + Y djk ldk k)•

*'a . S% - . • . ,. . .- - ~
- * % ." - " -- - . " "** .*,* -* - • ' ' ' "4 - -w - -w = - - = % % = %--. .. . . , . . - .. -..- . ,. .. - - - .% -
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h ijk y0i(dicjkLd L djik Ld (1.8e)
8 3 m11

m = (dd - )(dd- 6) (1.8f)

i%. 1 m (d djidt)

, .,k + i d 6itdk + di6jkdI + d kd 4dd

-. +-Bs 6ik6J + 6jk6it - 6ij6k + didj6 ki + 6 jdkdI

di6jdk - dj6idk - di6jkdI - dJ6ikd + didjdkd).

The nondimensionalizations of these functions are as follows:

;'o- -6aa'o, ;a' 4wa. bae- 8a (1.9a-c)

as8 0 0- 20 3^0i

/(2a), h , - -a m . (1.9d-f)

1.3 Relations between the Resistance and Mobility Functions

Our numerical technique solves the resistance problem. We obtain the mobility

functions by using the following relations between the (dimensional) mobility

and resistance functions. In matrix form, we have:

a11 112 -11 -12 A11 A12 Ell i12 -1

a21 22 -21 22 A 2 A B

11 b 12 c11 c12 B 11 B12 c11 C12

21 22 21 c22 ;21 B22 C21 C22

b _ 2 2

rO

ItIi I''



:-.11 12 hl11 h 12 =1+ M 11+ M12

21 22 h21 2 2M21 M22

, 1 1 G 1 2 H 1 H111 12 ; 1 ;2 -1G 21 G 2 HJ. 1 H 2 . 1  a1 2 ;1 ;2 -2

b 11 b1 11 c 12 1
,.-

" m A -
jil 2l 11 2 1 1  l M 2 ( . .O

a a A A -1

Nf H. a a b

,'-21 H22 . 21 22

x* c c x C -111 12 b11 X12(111

x. c x C x C, x Cb1 .2 x21 22

{11 Y12 Y11 Y21 .11 .12 11 .2 1 (1.12)

a a b b A A B B

b b c c B B C CiY11 Y1 2 Y11 Y12 y 11 Y 12 Y 11 y 12

b b c 0B yB yC yC
Y21 Y22 Y21 Y22 .21 .22 .21 .22

:? 11 1l2 X1 X12 X11 12

= [x21 x22  X21 X222 X21 x22

* . ...-.r r.p'%V.
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r g y g h h[ y g h Y h
.21 22 21 2 2

G G H H Pa a b yby11 Y1 -Y11 Y12 11 12 1 2(. 14I G 2 Y Y YH J a ~a y b b
,-1 l1 Yl12 Yl 1 Y1 2b b o c

%- Y21 Y22 Y21 Y22

x . + XM2) + XG (xg + X ) + X( g + X92) 0 .15a-c)
Qi 00 2 01l1i 2 a2  12  2

' " . - (Y M YH2) + yG (yg + Y0 )  g YG (Yg2 y9

+yH +h h
01. 1 (1 a2 12 + Y2 2

z L (Z0 + za2, for a 1P2.

The above equations hold for two unequal spheres. If we limit the

* analysis to the case of two equal spheres, then the symmetry relation,

equation (1.4), implies that subscripts "22" and "21" may be replaced

everywhere by "11" and "12" respectively. For functions associated with B, b,

G and g, this substitution requires a change in sign. From here on, without

loss of generality, we shall restrict our attention to the "11" and "12"

functions.

*%

-'.'
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2. Boundary Collocation

The boundary collocation technique developed by Gluckman, Pfeffer and Weinbaum

(1971) has been used to solve a wide variety of low-Reynolds-number problems

-* where the system boundaries do not conform to a single orthogonal co-ordinate

system. A related technique was developed by O'Brien (1968) to calculate the

flow past a slightly deformed sphere. The earliest applications of the

technique were limited to axisymmetric problems which were solved using the

stream function. Since then, the technique has been applied directly to the

Stokes equation and three dimensional problems including the sedimentation of

three spheres with centers in a vertical plane (Ganatos, Pfeffer and Weinbaum

1978), the motion of a sphere between two parallel infinite plates (Ganatos,

Pfeffer and Weinbaum 1980) and the sedimentation of a sphere in an inciined

channel (Ganatos, Weinbaum and Pfeffer 1982). For our two-sphere problem, a

suitable co-ordinate system exists. Nevertheless we use the collocation

technique because accurate numerical results are obtained with minimal human

computation.

The essential idea behind the collocation technique is as follows. The

velocity field can be represented by an expansion in terms of basis functions,

each of which satisfies the equations of motion. In general, the number of

elements in the basis set is not finite because of the interactions between

the spheres. However, the higher order elements are usually unimportant.

Consequently, the series can be truncated at N terms and the coefficients of

the retained basis functions determined by setting the boundary condition at N

collocation points (hence the name boundary collocation). It is found

empirically that the lower order coefficients converge rapidly as N is

increased. This is important since, as shown later, the force, torque and

stresslet depend only on the first and second order coefficients.

%E %
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2.1 The Velocity Representation

The velocity field, v, satisfies the Stokes equation:

-Vp + 0 2v - 0 (2.1)

and the equation of continuity:

'-,

V-v - 0. (2.2)

*i The boundary conditions are those associated with each resistance problem.

Our goal in this section is to construct general forms of the velocity

representations and boundary conditions which together encompass the complete

set of resistance problems. Then, any resistance problem of interest can be

obtained by selecting the appropriate set of parameters. This structure is

readily passed on to the computer codes and the result is a versatile, yet

short subroutine (less than 60 lines of code) which calculates the entire

collection of functions.

As shown in Happel and Brenner (1965), the disturbance velocity field can

be represented using Lamb's general solution:

(x)- v(x)- Vn 1 + Vx(xxnl) (2.3)
4.' n-i
.'

+ (n+1) - (n-2) r 2
+ (2n-1 n-1 -42n(2n-l) Pn-1

where P-n-1' 0-n-1 and X_n_1 are exterior spherical harmonics.

Following Ganatos et. al. (1978), the velocity is written as a

superposition of two expansions, one centered at sphere 1 and the other at

sphere 2.

4-
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+(n+1) r (1) (n-2) z~(1)
n(2n-1) -1 p-n-1 n 2n 2nl)rl --

+ o(2) + Vxr (2) + (n+1) r (2) (n-2) (2)
-n-1 VE(2X-n-l) n(2n-1) -2 n-n-1 2n(2n-1)r2 vPn-l j

with r -x-x, r.-I for a - 1,2.

The spherical harmonics are expanded as:

(a) n --n-1 Pm(C (a) *a(a)
P-n- . Er Pn (oea ) [a~ On6m + m sinmo*)

4r n
0 (a) = r-n1 P m(cose ) Ca) (a) sno,
-n-i I n aL bOn OM+ b~ inm

() n -n-i m (a)
-a r P~ (cosea) 0cosm C0 .

For each resistance function, we will actually require only one

particular m, the value which appears in the surface velocity, And the

0-dependence will factor from our problem as shown in the next subsection.

Thus for two-sphere problems, a one-dimensional collocation (in e) is

possible, even if the flow is three-dimensional.

2.2 Application of the Boundary Conditions

The disturbance field must decay far away from both particles. At the sphere

surface, the disturbance velocity must equal a surface velocity, y , which is

the difference between the particle's rigid-body motion and the ambient

60 velocity. Thus all relevant cases are included in the following expression of

the boundary condition at sphere 1:

2 £

+ V*

r-1 V PrLP(cose)A 1m (2.5)

% % 6 4 A.'%
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In (2.5) the cosmo terms are omitted for mk1, since those resistance problems

are equivalent to those obtained from the sinmo terms (with a rotational

co-ordinate transformation about the sphere-sphere axis). The following table

shows the required vfor each resistance function.

-' Table 1.

Non-zero Resistance
Coefficient v 3Function(s)

... :

1) A 1 Translation along sphere-sphere axis. X t pxo b
* 10 A G

2) A 1 , 1 Translation perpendicular to axis. Y s , Y Go11 121

3) A 0 - 1 Axisymmetric straining. 11.+12

11i 12
4) A21  1 Rate-of-strain as in ZX shear flow. I a .o+ ioa

22 A 1 Hyperbolic straining in XY plane. Z 11Z1

6) B10 - 1 Rotation about sphere-sphere axis. X 

7) B1  , 1 Rotation with axis perpendicular to YCOB MOB

Ss hsphere-sphere axis.

We now examine the form taken by Lamb's representation at the sphere

boundaries. We use the cylindrical coordinate system (ZR,#) as shown in

Figure 1. The z, R and * velocity components in equation (2.14) are equated to

the corresponding components of the surface velocity in (2.5). Dependence on

*occurs for problems with mZ1, but factors out as follows: a factor Of sinm#

in the z-component and R-component equations and a factor of cosmo in the

.- component equation. Thus the boundary conditions on sphere 1 (i.e. r

requires that:

A1~ 0%A '
• ~ ~ P' .1 .B .
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2 C { (n+) -n m (n2) n 2
z C-1)0-1 z aI ) r -P- r- ( 1-2) -n,(
10 n-L mn a n, -,, ,. a n a

-n'. +-2 pm (n- 2 (=
+ b(c)[-(n,)rfl P(E + r (1-& )P"(C

m n a a n a a a n a

iA [1&IP( 1) + (1-E
2)pm'( 1) * B mpm( 1) (2.6a)

11.1 t- 1n-1

2" (n-) n mI a(Q[ (1)rn sineP
"nglntn-2 ) a a nl

+(n-2) rn m+P1 () mi8 M(~)
n(J4n-2) a a n '4a +m a n a

+ -r-2 [-(n+l) sine P N - +1 ()+msina Pm (&) ]
Enn a a n a a n a

(a) -n-1 m+1%(n ra Pn (E) } (2.6b)

-A _[sineP(E [ m+1 l)+msinOP(& B - m+

'p 2 -
2 " a) (n-2) -n pm )/sin8 ]

a- n -n(4n-2 mrfl W E(1 )/) a n• a-1 nl& n

+ mb~ [rn 2 P (t)/sine] + c(0[r 1  sine Pm(

-A mPm(& )/sine * BMsine P , ) (C (2.6c)
IM L 1

where &a 0 coss. There is an analogous set of equations from sphere 2.

. Equations (2.6a) and (2.6c) follow directly from the z-component and

. O-component equations. Equation (2.6b) is obtained by subtracting the

*-component equation from the R-component equation. This last maneuver allows

us to remove the singularities from the poles. Further details are given in

Section 2.5.

",",
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The series is now truncated at N terms. The 6N unknown coefficients,

1 1 1 2 2 2
a1, bmn' c, a 2 b and c2nP are determined by applying the truncated

version of (2.6a-c) at 2N collocation points on the surfaces and solving the

resulting 6Nx6N system. We remind the reader that the parameters m and i are

specified by the resistance problem. In the next section, the computations

are simplified by exploiting the mirror symmetry with respect to the XY plane.

2.3 Mirror Symmetry about the XY Plane

For the general problem of two unequal spheres, it has been shown that the

larger sphere requires more points (Liao and Krueger 1980). For two equal

9. spheres, the points are distributed in equal numbers between the two, at

equidistant spacings (Gluckman, Weinbaum and Pfeffer 1971). Furthermore, we

decompose each resistance problem into subproblems that exploit the fore-aft

mirror symmetry with respect to the XY plane. Symmetry dictates that the

coefficients in the series centered at sphere 1 either equal or are negatives

of the corresponding coefficients in the other series. This also holds for

the truncated expansion as long as the collocation points on sphere 2 are

. placed at the mirror images of the points chosen for sphere 1.

-9 An examination of the resistance problems reveals that they either posess

one of the following two types of symmetry or may be decomposed into two

subproblems, with a subproblem of each symmetry type. A velocity field with

mirror symmetry with respect to the XY plane satisfies:

i'-.
• i ~~Vx,y,z) .- xX~~)

v (X,y,z) - v (xy,-z),

y y
v z(X,y,z) = -Vz (x,y,-z),

• e (The flow vectors in the half-spaces are mirror images of each other). A

4 field with mirror anti-symmetry satisfies:

,,

% % % % * S.:.;. '.%~* -'''
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v (x,y,z) - -v (x,y.-z),

v (Xy,z) - -v (x,y,-z).

y y%°"-:.? v (x,y,z) - vz( y-z

For problems with these symmetries, the coefficients for. the terms

centered at sphere 2 are given by:

a (2) . Sa(l)
m imn

b- b(2) . Sb(1 )

(2)

where the symmetry parameter, S, is defined by:

1 for problems with muiror symmetry,

-1 for problems with mirror anti-symmetry,

and the collocation equation from a point on the surface of sphere 2 becomes

identical to that from the image point on sphere 1. Thus equations (2.6a-c)

and their counterparts from sphere 2 reduce to:

Sa (1 2
n2 1 (n-) an a n(14n-2) a

2 n-2 2m1
+ b 1 £ (S)a-l[ -(n+l)r n -2 F tP (& ) + r-n-2 (1.-2)P:m('a) J
E mn~ 1 mPC a a n a a a n a

2
+ mc( r (_S)a-l[ r-n-l-A mn a + n (2

• .' "Am[I P(I 1 ) +(1-& p1  ( + B.M=P( 1  (2.7a)

tm 1 1L1,m
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2 -1[ (n+l( -n

a(' Z ~ ~ an =2)) nIra sine Pm(&
n L mn ego, 1. a aC

.%n-I. a-i

(n-2) r-n I& PnI (t a + msine P n(,)J ]
n(n-2) a an a an a

+ E Sa- 1 r-n-2 [-(n+l) sine Pn( a) - P'n
1 (t )+msine P(t

inn a an a an a ana

- c(1) 2 al ni M5l-c r S - r -n l p+1an} (2.7b)

-. am1 a n a

A [isine P - pm+ 1 (&1)+msinelP ( l))] - B P m* U= m A~[Sn IP 1 1 1 1m 1 M

a-i[ (n-2) -n mn ma. mn Em1 n(4n-2) ra Pnt)s,6a
n=Z a-,

+ mb( 1  2 - n-2 M
* sa-l[ z S r(E Vsine

mn a-a a

(1) 2 a n-' M,
+ E Sa-[ r -  sine P' )ran a=1 a an a

w A Vmpc1 )/snel + Bmsine P ' (E) (2.7c)

Thus each resistance function is calculated by solving an appropriate set of

problems of the form given by (2.7a-c). We shall see that each resistance

function is a linear combination of a small number of the lower order

-" coefficients.

The remainder of Section 2 contains information relating to the code

development from (2.7a-c). Readers who are more interested in the end

applications may prefer to skip to Section 3.

2.4 Axisymmetric Problems

In axisymmetric problems certain velocity components vanish identically

because of symmetry. The 3Nx3N collocation system reduces to either an NxN or

2Nx2N system. Axisymmetric problems with v,=O have m-O so that equation

*% %
, " ". - , -- ..".." *. . . . j.. -. '." " .- - ,. - , 4 . . . '.. -. . -

S.,, ,':'..,, ,.' ..... ,... ... , . . .,," "..,'... .... . j' ,. .. . . .. ., .%..j'_'.,'.,
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(2.7c) and cmn vanish identically leaving a 2Nx2N system. On the other hand,

axisymmetric swirl problems with v as the only nonvanishing component reduce

to an NxN system since amn b mn, (2.7a) and (2.7b) vanish identically. The

reduced system can be obtained from the c(I ) terms of (2.7b) (i.e. the 2-3mn

block of the larger system).

2.5 Stability of the Collocation System of Equations

In this section, we review earlier reports on the stability of the collocation

system of equations and present new findings.

Problems occur in the collocation scheme if points are placed at the

equator, 61 v /2, and the poles. If a point is placed at the equator, the

terms from sphere 1, which are normally greater than those from sphere 2

vanish (since cos31 vanishes at the equator) thus destabilizing the system.

This problem was circumvented in the original work by Gluckman et. al. (1971)

by using twin points at 890 and 910, an approach which they justified by

examining the convergence behavior, in the limit of small c, for twin points

at 90-c and 90+e degrees.

At the poles, the system is Indeterminate because equations from the R

and * components become identical. Gluckman et. al. (1971) avoided this

* problem by not placing any points at the poles.

We have avoided the problem at the equator by using an even number of

points spaced at equidistant intervals. The indeterminacy at the poles was

o' removed by taking the difference of the R-component and 0-component equations

to arrive at (2.6b) and (2.7b). The source of the indeterminacy is then

apparent. Equation (2.7a-c) have zeros of multiplicity m, m+1 and m-1 at the

poles. They may be removed by factoring sinmel, sin m+ 1 01 and sinm- 1 1

respectively.
'P

A..

". q , %,,A . A, .%' * -'". - ..- ".- * . -,, -. . . ~ . * qPJ A ' *. .... .-. -... .. % . .% ". - *. . ... * ,,-.. " ,,* . . , * . ,
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When the spheres are far apart, accurate solutions are obtained with as

few as four points. Tests show that our collocation scheme compares favorably

with that of Gluckman et. al. (1971) for R/a between 2.1 and 10.0.

Furthermore, in the strong interaction region, our scheme converges faster

because the error profile in the gap region is reduced by the "Hermite

interpolation" nature of the approximant. Although we do not place a point at

the equator, the large number of points used in the near-field, e.g. N-60,

ensures the presence of collocation points near the equator.

The code development required a system solver and a routine for the

spherical harmonics. We used the LINPAK routines DGECO and DGESL to invert

the system. However, essentially identical results (15 significant figures)

were obtained with other (slower) routines. A recursion scheme was developed

for the spherical harmonics because our application required the harmonics

divided by factors of sinm0 . The stability of these routines was spot checked

by comparison with the tables in Abramowitz and Stegun (1964).

.:

'i"
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3. Calculation of Resistance Functions

In this section, we extract the resistance functions from the information

contained in the collocation solution. There are several methods for

obtaining the force, torque and stresslet on a particle from the velocity

solution (see Chapter 3 of Happel and Brenner, 1965). We present here a

simple but powerful method.

* J. The velocity field which was previously represented by Lamb's general

solution can also be represented by the twin multipole expansion (Jeffrey,

1974):

- E { F - (s + TO).V + ..

with the Oseen tensor, I defined by

V---

This representation is useful because it reveals that the force on particle a

appears as the coefficient in the term that decays as while the

dipole moments, S and T--'- .T appear as the coefficients in the terms

that decay as x-x a2. More explicitly, in the notation of Chwang and Wu

" (1975), the force, torque and stresslet appear as the coefficient of the

Stokeslet, Rotlet and Stresslet. Therefore, we rearrange the terms in Lamb's

,. representation to form the Stokeslet, Rotlet and Stresslet and obtain the

relation between the force and dipole moments and the coefficients (in Lamb's

representation).

The above ideas are put into practice for each resistance problem in the

following two-step pr~cedure.

1) In the first step, we take the arbitrary but convenient convention of
setting the appropriate ALm or B m equal to one (and set all others
equal to zero).

......... **** *
- . . -~.- .- .. .... -. , . .,.4 . -
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2) The force, torque and stresslet in the multipole expansion are expressed in

terms of the resistance functions as given by (1.5a-f). This expansion has
the same form as the (rearranged) Lamb's representation.

After the above prescribed algebra, we arrive at formulae for the resistance

functions in terms of the coefficients in Lamb's solution - amn(LMS),

b mn (i,m,S) and c mn(t,m,S). The arguments, L, m and S indicate which

coefficient is retained in the surface velocity (see Table 1 on page 13) and
the type of mirror symmetry. As discussed earlier, each function requires a

superposition of a mirror symmetric and mirror anti-symmetric problem, with

the exception of the scalar functions from M which already posiss the

symmetry. As shown below the mirror-symmetric solutions are summed to give

the 1-1 functions and their difference is taken to give the 1-2 functions.

C.-. The functions associated with translational motions and rate-of-strain

fields, with the argument (1,m,S) denoting which Atm is set equal to one, are

given by:

-A 1

XA -,a0 (1,0,-i) + a0(1'0,1)] (3.3a)

^A 1
xI2 = 4[a0 1(1,0,-1) - a0(1,0,1)] (3.3b)

12 3010

A 1

1 '  l (1 1 - l)  a (1 1 )](3.30)

-- 4a11(1,1,-l) - a 111 11)] (3.3d)

11 -[cI (I,1,-I) + c11(1,1,1) (3 3e)

1 - 1 ,-1) -c (3.3f)

XlIG  -J~ 02(1,0,-1) + 02(1 ,0,1)3 3.g

2 = -a02(1,O-1) - a02 (1,0,1)3 (3.3h)

.G 1-" 11 4[a12(1,1,-11 + a12(1,11I)1 (3.31)
[11 1

i "V "
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(2,0,1__ (3.3k)
11 12 1 10 02(201

+ 101(2,1,-l) (3-30)

z M + z M 1 (2121.(3-3m)* 11 12 1 0 22(21)

The functions associated with rotational motions, with the argument (L,mS)

denoting which B Lmis set equal to one, are given by:

11 2 Cc 1  o-1 .0 1 IuJ1 1C c'4 (14,(3 n

12 2 cc c 01 (1,0'-1) - c 010.,0,1)] 3-o

Y 1 (11'1 + ' 111'') (3-3p).11 42~c11(l ,i c 1 ,,

1 -1 1 1i.) (3. 3q)

.11 1f -1 a 12(l.111)] (3. 3r)

jH 1
12 ~ 1,*al2 li) - a12(1,1,)). (3. 3s)

This ccmpletes the calculation of the resistance functions. The mobility

* functions are calculated from the rsistance functions as prescribed by

equations (1.10) to 1.15).

I Z
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4. Results and Conclusions

In this section, we examine the results for the resistance and mobility

functions and compare them, where available, with those obtained by other

-. means. The resistance and mobility functions are plotted vs. the reduced

sphere-sphere separation, R/a, in Figures 2a-L and 3a-1 respectively. These

plots were generated using 12 collocation points for RZ3 and 24 points for

R<3. At these levels, convergence has been obtained far beyond the resolution

of the plotter. We note that YH YM 2' Yc and Ym are not monotonic

functions but have extrema. This phenomenon is consistent with the

requirement that two neutrally-buoyant spheres move as a rigid body when in

contact.

" For comparative purposes, an extensive table (not presented here but

available upon request from SK) was created for all functions. In the

construction of the table, the number of collocation points was increased

until convergence was obtained to five significant figures. This table was

used as "the collocation results" in the comparison. Except for almost

touching spheres, the number of collocation points and therefore the order of

the system of equations was well within the memory limitations of a VAX

11/780. At sphere-sphere gaps of 0.Ola the most difficult function, XA

. converged to three significant figures at 60 collocation points. The program

in its present form allows up to 100 points.

*-. In the far-field, asymptotic solutions are either available or readily

* obtained by the method of reflections. The collocation results matched these

far-field solutions for all functions. In fact, the far-field solutions were

Nthe primary defense against program bugs.

A more stringent test was available for resistance and mobility functions

from A, B, C, a, b and c because of the recent twin-multipole expansion

"' %.. p." , .,' .i"'V , ".% % %

*.p*.-~~~ ~~ %p*-* % .* .~~ 4.~4 ~ . '
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:n' results of Jeffrey and Onishi (1984). The collocation results matched those

obtained from a fifteen-term form of their expansion solution. The agreement

4' . was exact (in the sense that it was limited only by machine roundoff errors

e.g. over 12 significant figures) except at the small separations mentioned

above, where both techniques require special modifications.

Accurate results are also available for certain combinations of the

functions. The relative velocity between two spheres in a shear field which

was obtained by Lin, Lee and Sather (1970) using bispherical coordinates

1-n12 yand -y1 g Here again, agreement was obtained

to all significant figures presented in the earlier work.

In the near-field, the collocation results for A, B, C, a, b, and c were

compared with the near-field lubrication solutions. The latter are collected

from the literature and presented in Jeffrey and Onishi (19814). Plots for the

mobility functions presented in Figures 4a-j show that the two solutions match

in an overlap region, but also show that the collocation technique, at least

- in its current form, cannot "turn the sharp corner" in the y functions.

In conclusion, we believe that we have successfully calculated, using the

boundary collocation technique, the complete set of resistance and mobility

functions required for determining the force, torque, stresslet on and motions

* of two equal sized spheres in an ambient velocity composed of a uniform stream

and linear field. The results are accurate over all separations except at

almost-touching (R/a < 2.01). In particular, this report provides an accurate

algorithm for the computation of the stresslet functions over a wide range of

sphere-sphere separations.

%

1%
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,,. Near-field and Collocation
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Figure 4. Comparison of the collocation and near-field solutions.
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Near-field and Collocation
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Near-field and Collocation
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* 5. Sample Applications

5.1 The Bulk Stress in a Suspension of Spheres to Order 0
2

Batchelor and Green (1972b) have derived the following rigorous expression for

the viscosity of a suspension of identical rigid spheres in a steady pure

straining motion.

eff 4 + 5 + C2 { + 15 J(;)q(C);2dC , (5.1)

where C - R/a and J(C) and q(C) are determined from the mobility functions as

.

(C) - + 2^

' q(C) l [I- A(C)3_ expifJ'l 3tA)A. (53

.C.. x1 12

B(;) - 8(yg -y 9 )/C. (5.5)11 12

0 At the time of their work, Information on J was limited to the far-field

region (obtainable by the method of reflections) and the value at touching.

As mentioned in their paper, the interpolation of the J curve in the region

2.0025<C<3 was the primary source of uncertainty In the final numerical

* .*result.

_
.7, .Figures 5a-5d ow plots wof Jndralsonon thi srlete ftons Kaned

=+ M. Th dsedlie-s h resulnt(obtainedusing the method of reflections) n h au ttuhn.

r° 4 X P

J. .

:-.'The "x aet R/aed 2 tindicates, the valuesrptoung pheres.u A i the caseo

'l'A
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Figure 5. Comparison of the collocation and method of reflection solutions-
for the stresslet functions of Batchelor and Green.
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Figure kc.M
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* with many of the mobility problems, we see that the method of reflections

result is accurate to quite small separations. The explanation is that in

mobility problems, the leading terms in the higher order reflections are from

4the relatively weak dipole-dipole interactions. We note that L and M are not

monotonic.

When (5.1) is evaluated with the collocation result, we find that the

- integral is less than the earlier estimate. Specifically, the integral from

2.0025 to 3.0 is found to be 0.384 instead of 0.449. Thus the coefficient of

the a2 term is 7.1 instead of 7.6, i.e.,

e 1 + + 7.1c 2

The new result is within the ±10% uncertainty bound stated by Batchelor and

Green.

5.2 The motion of a rigid dumbbell in a shear-field

Rigid dumbbells have been used to model suspensions of polymers with stiff

backbones (see Bird et. al. 1977). In their models the hydrodynamic problem

is simplified by assuming that the dumbbell consists of two point forces

connected by a rigid rod. (The rod has no hydrodynamic resistance). In this

section, we show that if one replaces the point forces with spheres, the

necessary hydrodynamic functions can be extracted from our two-sphere

functions.

The motion of a neutrally buoyant, axisymmetric particle in a shear field

was completely solved by Bretherton (1962) who showed that the motion of

almost all axisymmetric particles was the same as that of some ellipsoid of

revolution. Thus, for our dumbbells, we use our two-sphere functions to find

the "effective spheroid".

% 1% *. %%%%
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The geometry of a symmetric dumbbell is completely determined by the

center-to-center separation, R and sphere radii, a. Furthermore, if all

distances in the problem are scaled with "a", then the possible dumbbell

shapes are spanned by varying R/a over [2,-). If the dumbbell rotates about

its center of mass as wxx, then the spheres move as:

U - U Wxx, a-1,2. (5.6)

We can now write the forces and torques on each sphere in terms of the

two-sphere resistance functions. The torque on the dumbbell is the sum of the

torques on each sphere plus the couple from the forces on the spheres. After

some algebra, we arrive at:

Ti M Cij(Wj-%) - HiJkEJk, (5.7)

where the dumbbell resistance functions can be written in terms of the

two-sphere resistance functions as:

C xCdidJ + - d dj). (5.8)
ij YC(6 j I

with X - 2(X1 1 +X1 2 )

and - 2 (Y1 -Y1 + 2R(Y -Y1) + 2(Y +Y )
2 11 .12 11 .12 .11 12

H ijk " (dckit+d kEJt)d . (5.9)

wih H 1 2 A A +l BB G G H H
with y R 2(Y1_y12) . (-11Y121 (Y11 .Y12 ) 2(Y11 Y 12).

" 4, A. ".' * " . ... , "J k ... '. '.%.,!.' . . -.. .. *. -.% . '. .'
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*If we set T - 0 in (5.7), we can solve for the angular velocity as:

a + {2YH/yCdx(E.q). (5.10)

* A prolate spheroid with aspect ratio p rotates as given by (5.10), but with

2YH/yC replaced by (p2-1)/(p 2 +1). Therefore, the dumbbell moves like a

prolate spheroid with the aspect ratio,

bHC

p - [(1 + 2Y H/y C)/(1 - 2yH/yC)]
1/2.  (5.11)

Plots of the "equivalent-spheroid" aspect ratio vs. the dumbbell shape

parameter, R/a are shown in Figure 6.

Acknowledgements:

We thank Professor David Jeffrey (McGill) for making available early versions

of his papers.

.4

I

'%

.!. *.

.*,*

'C .--=-- 
-

. "-"" - -""."-'. 4 -=' -" ' ,."- "' 44"."" "- """44 ."""".:.<":"."," "':"" ":'''''



43

co 0

.r

Cco

V) w

00

ot

0

-H4

54

4

too

C-o COVt

oileZ loadsV ploiaqtdS

I%

%U

. ~ ~ ~ ~ ~ ~ ~ ~ l ":! L., *UJ .** ~ U



As

44
,,.

* Appendix

,~ 1. Notes on the Computer Programs

The following section contains listings of five programs. The "main" program,

MANDR.FOR requires only two inputs: the number of collocation points and the

scaled separation between the spheres, Rl/a. MANDR.FOR occupies five pages and

this length may give the wrong impression that the algorithm is involved.

However this program merely sets up the appropriate inputs for the entire

* collection of resistance functions and passes them to subroutine STOKES.FOR.

* The heart of the algorithm is contained in STOKES.FOR, which occupies only a

single page. If one were interested in a particular resistance function, the

*correct set of input parameters for STOKES.FOR may be deduced by examining the

appropriate module in the main program.

As mentioned in Section 2, axisymmetric problems reduce to smaller

• .systems. In axisymmetric translational and straining problems, the resulting

2Nx2N system consists of the upper-left blocks of the general system.

Consequently, in STOKES.FOR we need only insert the line:

IF (M .EQ. 0) IDIM = 2*NPT

before calling the inversion (LINPAK) subroutines.

In axisymmetric swirl problems, the NxN system is not located in the

upper-left portion of the general system. Consequently, the appropriate block

cannot be obtained as easily from the general case. We have taken the simple

remedy of taking the 2-3 block out of STOKES.FOR and creating the Degenerate

subroutine, STOKESD.FOR.

The following parameters are passed in and out of STOKES.FOR:

R: Sphere-sphere separation (scaled by sphere radius).

,.- ,'--

% . .r -A
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NSTAR: Order of the lowest non-zero multipole. (e.g. if the hydrodynamic

force on the sphere is nonzero, NSTAR-1. If the force is zero,

then NSTAR is 2 in our application because of the dipole moment.

M: Parameter m from the resistance problem.

SGN: Symmetry parameter S.

NPT: Number of collocation points (N in the text).
S.

RHS: One dimensional array which contains the RHS of the system of

equations. It originates from the surface velocity evaluated at

the N collocation points.

AMN: One dimensional output array of the a (with n - NSTAR, ...mn

BMN: One dimensional output array of the bmn (with n - NSTAR, ...

CMN: One dimensional output array of the c n (with n - NSTAR, ...

Function subroutine PNS(N,M,X) calculates Pm(x)Esine]-m. (PNS stands for
n

-.. P-No-Sine). PNSP(N,M,X) does the corresponding steps for PM'(x). Subroutine
n

DMATIN.FOR Is used when the mobility functions are calculated from the inverse

* of the resistance matrix.

* If these programs are installed on another computer, the sample run

provided after the program listings may be used to test the installation.

*0

i.
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C MANDR .FOR

C MOBILITY AND RESISTANCE FUNCTIONS FOR 2 IDENTICAL SPHERES a
C BY BOUNDARY COLLOCATION OF LAMB'S GENERAL SOLUTION a
C
C SANGTAE KIM
C DEPARTMENT OF CHEMICAL ENGINEERING a
C AND MATHEMATICS RESEARCH CENTER a
C UNIVERSITY OF WISCONSIN a
C
C RICHARD T. MIFFLIN a
C DEPARTMENT OF CHEMICAL ENGINEERING a
C PRINCETON UNIVERSITY a
C
C VERSION 2: APRIL 24. 1984

C PROGRAM WAS DEVELOPED AND TESTED ON A VAX 11/786. 1983-1984
C
C MAIN PROGRAM: MANDR
C SUBROUTINES CALLED FROM MAIN: STOKES. STOKESD. DMATIN
C SUBROUTINES CALLED FROM STOKES. STOKESD: LINPAK ROUTINES DGECO,DGESL.
C PNS.PNSP
C
C
C PROGRAM DESCRIPTION
C
C

N., C MAIN PROGRAM SETS PARAMETERS CORRESPONDING TO AMBIENT VELOCITY FIELD
C FOR EACH RESISTANCE FUNCTION. AFTER CALCULATION OF THE MULTIPOLES,
C MAIN ALSO SCALES THE RESULT ACCORDING TO THE NON-DIMENSIONALIZATION
C FOR EACH RESISTANCE FUNCTION. MAIN CALCULATES THE MOBILITY FUNCTION
C BY INVERTING THE GRAND RESISTANCE MATRIX.
C
C GIVEN THE PARAMETERS FOR THE AMBIENT VELOCITY, SUBROUTINE STOKES
C RETURNS MULTIPOLES COEFFICIENTS. THE SYSTEM OF EWbATIONS IN THIS
C SUBROUTINE ARE OBTAINED BY APPLYING THE BOUNDARY CONDITIONS AT EACH
C COLLOCATION POINT.
C
C SUBROUTINE STOKESD IS A SUBSET OF STOKES AND IS USED FOR THE
C DEGENERATE CASES INVOLVING THE RESISTANCE FUNCTIONS X11C AND X12C.
C
C PNS AND PNSP ARE DERIVED FROM THE ASSOCIATED LEGENDRE FUNCTIONS
C

IMPLICIT DOUBLE PRECISION(A-H.O-Z)
* DIMENSION RHS(30).AMN(1SO).BMN(IOO),CMN(IBe).

m COs5(le0).AY(4.4).DUMWY(4.1)
C
C READ IN:

., C 1) NUMBER OF COLLOCATION POINTS (EVEN INTEGER): IPTS
C 2) CENTER TO CENTER SEPARATION BETWEEN SPHERES: R

- C

O, READ (40.5) IPTS.R
5 FORMAT (i16.F1e.8)

C SET COLLOCATION POINTS:
C

P! - 3.14159265358979DO

DIPTS - DFLOAT(IPTS-1)il. DO 10 !-IIPTS
THETA - DFLOAT(1-1)/DIPTSePI

.1. le cos1(l) -DCOS(THETA)

C
c
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C
.1~~ C *--see.. CALCULATION OF XIIA. XI2A. XI1G. X12C ***so*****

C
DO 26 I-I.IPTS
12 - 14-JPTS
13 - 12+IPTS

-. 4.RHS(I) - .00
RHS(12) - .00

20 RHS(13) - .00
CALL STOKES(R.9.-I.00.IPTS.RS.ADI.BN.CJ)
Ti - 2.DO/3.DGAMN'(1)
T3 - -. SDG*AMa4(2)

C
- .1 0O 30 I-I.1PTS

12 - I+IPTS
13 - I24IPTS
RI4S(I) - .00
RHS(12) - .D9

*30 RHS(13) 9 .00
CALL STOKES(R.I.0.I.DO.IPTS.RHS.AwtMN.OI4CM)
T2 - 2.D8/3.D0.AM4(I)
T4 - -. 500.AII(2)

XiIA - W9*0(Tl +. T2)
X12A - .500.(T - T2)
XIIG - .500.(T3 + T4)
X12G - .500.(T3 - T4)

C

C

DO 40 I-I ,IPTS
12 - I4IPTS
13 - 12+IPTS
RHS(1) - 0.00
RHS(12) - 0.D8

49 RI4S(13) - 1.00
CALL STOKES(RI .I,-I.DO.IPTS.RS.AMN.,Ihu4CaJ)
TI - 2.DO/3.D9*AMN(I)

'.4 T3 - 2.00.014(1)

T5 - -.500.AMNt(2)

D0 50 I-IIPTS
1.*.12 - I+IPTS
* 13 - 124-IPTS

RI4S(I) - .00
RHS(12) - .00

*50 RI4S(13) - .00
CALL STOKES(R.I.I .t.00.IPTS.RHS.At4.hhIQi)
T2 - 2.D6/3.D9*AMI(I)
T4 - 2.DO*CMN(I)
TB - -.5D00Aht4(2)

C
YIIA - .500.(Ti + T2)
Y12A - S50G*(T2 - TI)
Y119 - -.500.(T3 + T4)
Y128 - .5So(T3 - T4)
Y110 - S50G1(TS 4+ TB)
Y120 - .500o(T6 T5)

C
C
C

C
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C
C .e~.....CALCULATION OF X11C. X12C ss..~..
C

00 66 1- ,IPTS
60 RI4S(I) m -1.00

CALL STOKESD(R.- .D6. IPTS.RHSOwI4)
TI - CMO)

DO 76 I-sl.IPTS

76 RHS(I) - -1.00
CALL STOKESD(R, .D6.1PTS.RlHS.CMN)
T2 - CNl

C
X11IC - .50S*(Tl + T2)
X12C - -.506i(TI - T2)

C
C s8e....se CALCULATION OF Y1IC, YI2C. Y1IH, Y12H .....
C

DO 86 1-1,IPTS
12 - I+IPTS
13 - 12+IPTS
RHS(I) I .06
RHS(12) O .D0

80 RI4S(13) CS()
CALL STOKES(R.I.I.-I.D0.IPTS.RHS.AM.BMd.CMN)
T1 - 2.D6/3.D9*AMN(l)
T3 - Cuai(I)
TS5 -. 2506.*wII(2)

C
DO 96 I-1.1PTS
12 - 1+IPTS

13 - 12+IPTS
RI4S(I) - 1.06
RNS(12) - 6.06

99 RHS(13) - -~ I
96 CALL STOKES(ft.1.l.1.DO.IPTS.RHS.MN#.BMN.CMN)

T2 m 2.DO/3.DOAMNU(1)
T4 - CNl
T6B -. 25D0.AMN(2)
Y11C - .500.(T3 + T4)
Y12C - .506.(T3 - T4)
Y11H - .506.(T5 + TO)
Y12H4 m .506s(T5 - TB)

C
C ********so CALCULATION OF XllM+Xl2M. Y11+Y12M. Z11+Zi2M .....
C

DO 106 I-1.IPTS
12 - 1+IPTS
13 - 12+IPTS
RHS(I) - 2.DOsCOS1(I)
RHS(12) v- -1.00

* 166 RI4S(13) - 6.06
CALL STOKES(R.1.O.1.D6,IPTS.RHS.AMN.BM.wUJ)
X1112M - .10S*AMN(2)

C
DO 110 1m1,IPTS
12 - I4IPTS

* 13 ma 12+IPTS
* RHS(1) an 5.06

RI4S(12) - 6.00
a.li11 RHS(13) -m 3.D6OOSI(I)
,V~jCALL STOKES(R,. ,I-1.00.IPTS.RS.AD4.9W4.CM)

Y1112M m- IlDO*AMN(2)
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13 - 2.PT

C

WR3T (41 5N) IPPT
RITES(41- .519
RIT(1.528 - 0.00AX1A.
WRIT RH(1 .00 lBY
CALL(4.59 STKE(RC..Y.DS.TS.YAaBNca4
WR5 ZITEU (41.5) IGd(1) l2.Y2

C
C -AR END OF CALCULATONSA FORCUTHRESMISTANC FUNCTIONS-
C

WRITE (4.5G2XA.YI.IAY

WRITE- (4.500YI1H.I
'Y26-..4.Y2

C

C
S. Y(1 - 6.0YI8

Y(2 - Y2
AY(.1 - Y2

Y(2 - .OYIB

C
AY(1.1) - YIIA
AY(1.2) - -Y120

.1~AY(2.1) - Y128
AY(2.2) - -Y1A

C
AY(3.3) - Y11B
AY(3.2) - Y12C
AY(4.3) - Y12

'aAY(4.2) - Y11C

7" AY(K.)- -8.2S

ALL.4 -MTI(Y.4DM1.DTRM
C

Y(3.3 - AY31C .D
Y2.M - AY32*.
Yi-AY(4.3) *$.Y12

Y12CM - AY(3.4).S.DO
C

.4 .0.41 A
V'VV~~~~~ % %9i' h 5 . a
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XI1AM:- XIIAv(XiAXIIA -X12ASXI2A)

X12CM - -X12C/(XIIC*XIIC - X12C*X12C)
C

YIIHM - -YI IG*YIDM - Y12G*Y128M + YIIH&YIICM + Yl2HsYl2CM
Y12NM - Y1IG.YI28M + Y12G*YIBM + Yi1H*Yl2GM 4 Y12H*YliCM

C
XI 1GM - (Xl1G*X1 1AM + X12GoXi2AM)/3.D9
X12GM - (XllG*X12AM + X12G.X~IAM)/3.DO
VI 1GM - (V11G.V1lIAM + Y12G*Y 2AM)/3.DO -YIIH.YIIBM.Yl2HoV12BM
Y12GM - (YI1G*Yl2AM + Y12G*Y11AM)/3.DB -YI 1HoYI2DM+Y12Ho.VIBM

C
X1J41 - -XIl2M - BSDO.(XIIG-Xl2G)o(Xl2GM-XIIGM)
YIMM - -Y1112M - 2.4D0.(YIG-Y 20).(YI2GM4-YIIGM)
S 4~ 2.4DO.(Yl1Hy124)O(11HM4Y12HMw)

ZIlMl - -ZI112M
C
C - END OF CALCULATIONS FOR THE MOBILITY FUNCTIONS -
C
C COMPUTE BATCHIELOR AND GREEN' K . L. M AND J FUNCTIONS
C
C

DGK - -ZIMM - 1.D0
DCL - -VlIMM - I.DS - G
8GM - -1 .5DO.( XlhMM + I1.00 4 90K 4 4.DG*BGL/3.0 )
BGJ - -1.9 - 0.2*X1IM - 0.40(Y141+ZIMMw)

C
C

WRITE (41 .510)
WRITE (41 .620) XIIAM.YIIAM.X12AMYI2AM
WRITE (41 .630) YIIBMV12BM
WRITE (41.640) Xl ICM.V1 1CM.Xl2CM.YI2CM
WRITE (41.650) XIIGM.YIlGM.X12GM.YI2GM
WRITE (41,660) YIiIHM.Y12HM
WRITE (41.670) XIhSJ.YIMM.ZiMM
WRITE (41.680) DGK.BGL.BGM.BGJ

-J C
500 FORMAT (15X.'NUMBER OF POINTS: *.14.IOX.*R - .FS.3.//)
510 FORMAT (23X.'X11 .1IX. 'Vil .IIX. X12 *I1X.V12'./)
520 FORMAT (5X.'RES. FMCS. A*.F11.6.3F14.6./)
530 FORMAT (5X.-RES. FNCS. 8'.F25.6.F28.6./)

*540 FORMAT (5X.'RES. FNCS. C'.FII.6.3F14.6./)
550 FORMAT (5X.'RES. FNCS. G'.Fi.6.3F14.6./)
580 FORMAT (5X.'RES. FNCS. H'.F25.6,F28.6./)
576 FORMAT (5X.'RES. FCNS. X11M+Xl2M.V1IM+V 2M.ZliM+ZI2M:'.

620 FORMAT (SX.'MOB. FNCS. A'.FII.6.3FI4.6./)
630 FORMAT (5X.'MOB. FNCS. B8.F25.6.F28.6./)
640 FORMAT (5X.'MOD. FNCS. C'.FiI.6,3F14.6./)
650 FORMAT (5X.'MOB. FNCS. G'.Fi1.6.3Fi4.6./)
660 FORMAT (5X.IiOB. FNCS. H'.F25.6,F28.6./)
670 FORMAT (5X.'MO6. FNCS. XIM. VIM AND ZIM:'.F13.6.2F12.6.//)
680 FORMAT (5X.'MOD. FCNS. K.L.M AND J:*.4FI2.5)

STOP
END

ILI

g- % %.

"p.% %
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SUBROUTINE STOOES(R.NSTAR.M,SGNNPT.RHS.AJ~MN.MCSI)
IMPLICIT DOUBLE PRECISION (A.-1,O-Z)
DIMENSION A(300.3fl).RHS(1).IPVT(3N),Z(30l).

0 ~ AM( ) .BuaN(1) ,Ca( )
DATA LDA/309/

C DIMENSION CDF MATRIX A MUST EXCEED OR EQUAL 3.NPT.
DMi - DFLOAT(M)
DO 19 K - I.NPT
K2 - K + NPT
K3 - K(2 + NPT
N - K + NSTAR - I
FNI - DFLOAT(N+1)/DFLOAT(4*N-2)
FN2 - DFLOAT(N-2)/DFLOAT( N*(4*N-2))

DO 19 1 - I.NPT
12 - I + NPT
13 - I + 2*NPT
THETA - DFLOAT(I-1)/DFLOAT(NPT-i )s3. 14150265358073D0
COI - DCOS(THETA)

-A S11 - DSORT(l.D*-COleCO1)
R2 - DSORT(SIl.SI1 + (R4COI)*.2)
C02 - -(RcODI)/R2
PNSI - PNS(N.M.COl)

A PNS2 - PNS(N.M.C02)
PPNS1 - PNS(NM4I.COI)
PPNS2 - PNS(N.M+I.C02)
PNSPI - PNSP(N.M.0OI)
PNSP 2 - PNSP(N.M. C02 )

C RATIOS OF SINI/51N2 FROM FACTORING OF SINES IN EQUATIONS
RZ - ( 1.D/2 )..U
RR - RZ/R2
RPHI - RZ.R2
A(I.K) -FNI*( COl.PNSI - RZ.SGN.002*PNS2/Rt2ooN)

* FN2*( PNSPI - RZSSGNPNSP2/R2..N)
A(IK2) -- DFLOAT(N M91).( PtJS(N+1.u.COl)

0 - RZ.SGN.PNS(N4+l.M.002)/F(2.d(N+2))
A(I.K3) -DM*( PNSI - RZ*SGNPNS2/R2**(1441))

A(12,K) -(FNI + FN2*DM )*( PNSI + RR.SGN.PNS2/R2*.N)
'9. + FN2*( Cdi*PPNSI + RRoSGNoCO2oPPNS2/R2*.N)

A(12.K2) - -DFLOAT(N.4M.).( PNSI + RR.SGN*PNS2/R2o(N42))
0 --COI*PPNSI - RR*SCNC02*PPNS2/R2**(N+2)

A(12.K3) - -PPNSl - RR*SGNPPNS2/R2..(N+I)
C

A(13.K) - -ODM*FN2.( PNSI +9 SGN'.RPHI*PNS2/R2*.N)
A(13.K2) - DM*( P1451 + RPHI*SGN*PNS2/R2**(NI2))
A(13.K3) - PtISPI +4 RPHI.SGN*PNSP2/R2..(N+1)

10 CONTINUE

IDIM - 3*NPT
IF ( M .EO. 0 ) IDIM - 2NPT
CALL DGECO(A.LDA.IDIM.IPVT.RCONSZ)
CALL DGESL(A.LDA.IDIM.IPVTRNS.S)

C
DO 340 J-1.NPT
JI -J + NPT

J2 -J1 + NPT
AMN(J) - RHS(J)
BMN(J) - RHS(JI)

340 CMN(J) - RHS(J2)
RETURN
END

v~o p~ p p .p v -- ** *
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SUBROUTINE STOKESO(R.SGN.NPT.RHS.C&J)
IMPLICIT DOUBLE PREC.4ION (A-H.O-z)
DIMENSION A(1SS,1*B),RHS(1).OwtJ(1).IPYT(1O*)
DATA LDA/ e/

- C DIMENSION OF MATRIX A MUST EXCEED OR EQUAL NPT.
DO 18 K - 1,NPT
N -K
7141 - DFLOAT(N+1)/DFLOAT(4*N-2)
Ft4Z - OFLOAT(N-2)/DFLOAT( N.(4.N-2))
DO 16 1 - I.NPT

* THETA - DFLOAT(1-1 )/DFI.OAT(NPT-1 ).14159265358979D0
COI - DCOS(THETA)
SIl - DSORT(1.De-COl*cO )
R2 -DSORT(SII*SI1 + (R4.COI)**2)
C02 -- (R+COI)/R2
PPNSI - PNS(N.1.COI)
PPNS2 - PNS(N.1.C02)

C RATIOS OF SINI/5IN2 FROM FACTORING OF SINES IN EQUATIONS
RR - I.DB/R2

A(I.K) - -PPHS - RR*SGN*PPNS2/R2**(N+I)

10 CONTINUE
d C

IDIM mi NPT
CALL DGEFA(A, IDA.IlOW. IPVT.INFO)
CALL DGESL(A. LDA. IDIM. IPVT.RNS.S)

* DO 346 Jml.NPT
*348 Ch6I(J) -RI4S(J)

RETURN
END
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DOUBLE PRECISION FUNCTION PNS(N.UPX)
IMPLICIT DOUBLE PRECISION (A-M.O-Z)
IF (M .LE. N) 0O TO I
PNS - @.DO
RETURN

1 NI -N-U
IF (M .EO. 0) 00 TO 100
DM w DFLOAT(M)
COEFF - 1.00
DO 3 I-1.M

5 OEFF - GOEFFODFLOAT(20I-1)
PO - COEFF
IF (N .GT. M) GO TO 7
PUS n Pe
RETURN

7 P1 - PO*X*DFLOAT(2.M.1)
IF (N .GT. W+1) 00 TO 0
PNS - P1
RETURN

9 P -P1
PMINUS - P8
DO 10 I-2.Nt
PPLUS - 2.D**X P - PMINUS

+ DFLOAT(2.M-t).( XoP-PMINUS )/DFL.OAT(I)
PUINUS - P

IS P -PPLUS
PNS - PPLUS
RETURN

C
100 P0-1I.00

I F (N . GT. M) 00 TO 107
PNS - Pf
RETURN

107 P1- X
IF (N .OT. M+l) GO TO 109
PUS w Pt
RETURN

109 PUINUS - PS

DO l10 I-2.NI
*PPLUS - 2.DX*P -PMINUS -(X*P -PMIUS)/DFLOAT(I)

PMINUS - P
110 P -PPLUS

PNS -PPLUS
RETURN

JbJ

%046
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DOUBLE PRECISION FUNCTION PNSP(N.M.X)
IMPLICIT DOUBLE PRECISION (A-44,O-Z)
NI - N-U
IF (M .EQ. 0) GO TO 109
OM - DFLOAT(M)
COEFF - 1.DO
DOS5 I-I.U

5 COEFF - COEFF*DFLOAT(2*1-1)
PS - COcvr
PPO - -OM.X*P0
IF (N .GT. M) GO TO 7
PNSP wPPS
RETURN

7 P1 - PO*X*DFLOAT(2eM+I)
PPI - DFLOAT(2.MIM.)o( PO.(1.00-X..2) +X-PPO
IF (N XGT. M41.) GO TO 9
PNSP w PPI

4 RETURN
9 P -Pi

PP - PPI
PMIN - PO
DO 10 I-2.Nl
PPLUS w 2.DO.X*P - PMIN + DFLOAT(2.M-1).(X.P--PUI)/DFLOAT(I)
PPPLS - ( DFLOAT(1+2eU)a(1.DS-X..2) + DMoX**2 )*P

-DM.X.PPLUS + XsPP
PUIN - P
P - PPLUS

I@ PP - PPPLS
PNSP - PPPLS
RETUIRN

C
199 PS -1.D0

4, PPS w .00
IF (N .GT. 0) G0 TO 107

4 PNSP - @.DO
RETURN

107 P1 X

PPI -1.006- XoX
IF (N XGT. 1) GO TO 109
PNSP -PPI

RETUIRN
109 PMIN - PS

PP =PMI

DO 110 I-2.NI
PPLUS - 2.00.XoP - PMIN -(X.P-PMIN )/DFLOAT(I)
PPPLS - DFLOAT(I)*PPIeP 4X*PP
PMIt4 - P
P - PPLUS

lie PP - PPPLS
PNSP - PPPLS
RETUIRN

4ED
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SUBROUTINE DMATIN(A.N.B.M.DETCRMMAX)
IMPLICIT DOUBLE PRECISION (A-14.O-Z)
DOUBLE PRECISION INDEX

* * DIMENSION A(NMX.N).B(NMAX.M).PIVOT(100),INDEX(190)
DETERM-1 .00
00 20 1-1,N
PIVOT(l)-G.DO

20 INDEX(I)-8.DO
DO 550 I-1.N
AMAX- .00
DO 165 Jmt.N
IF (PIVOT(J).NE.O.DO) GO TO 105
DO 100 K-1.N
IF (PIVOT(K).NE.O.DO) 0O TO 10
TD~ImABS(A(J .K))

* IF (TEMiP.LT.AMAX) GO TO 100
IROW-J
IOOLUMI-K
AMAXTEP

100 CONTINUE
105 CONTINUE

INDEX(lI)-4.09603.DFLOAT(IROW).OFLOAT(ICOL&4)
J-IROW

4b AMAX-A(J. ICOLLIJ)
C SUPPRESS CALCULATION OF DETERMINANT .....
C DETERMwAMAX*DETERM

IF (DETERM.EQ.S.De) GO TO 60
PIVOT( ICOLUM)mAMAX
IF (IROW.EQ.ICOLUM) GO TO 260

k. DETERM-OETERM
00 200 1KmI.N
SWAP-A(J .K)
A(J.K)-A(ICOLLM.K)

A 200 A(ICOLUM.K)mSWAP
IF (M.LE.0) GO TO 260
00 256 K-1,M
SWAP-B(J ,K)
B(J .K)-B(IOOLLDI,K)

250 B(ICOLLDJ.K)mrSWAP
260 KmICOLLUd

A(ICOLUMK)m1 .00
00 350 K-1,N

350 A(ICOLLUMIK)wA(ICOLLUd.K)/AMAX
IF (M.LE.0) GO TO 380
00 376 K-I.M

370 B(ICOLUM,K)-(ICOLUMw,K)/AMAX
388 00 556 J-1,N

IF (J.E0.ICOLUM) GO TO 550
TmA(J. ICOLUM)

"'4.-.A(J. ICOLUM)m0.00
DO 450 K-1.N

*450 A(J.K)-A(J.K)-A(ICOLLIM.K)*T
IF (M.LE.0) GO TO 550
00 500 K-iNM

500 B(J.K)-B(J.K)-6(ICOLUM.K).T
*550 CONTINUE

600 DO 710 Iw1.N

K-IDINT(INDEX(I11)/4.996D3)
* ICOLLUw*IOINT(INDEX(lI1)-4.09603.DFLOAT(K))

IF (K.EO.ICOLLNA) GO TO 710
1%*~~D0 705 Jm1.N

SWAP-A(J ,K)
P A(J .K)-A(J.IOLDJ)

705 A(JICOLUM)-SWAP
710 CONTINUE

RETURN
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NUMBER OF POINTS: 12 R , 4.0

Xli Y11 X12 Y12

RES. FNCS. A 1.169470 1.0433e3 -4.427212 -6.2e4477

RES. FNCS. B -4.020331 0.098152

RES. FNCS. C 1.806296 1.04226 -0.e15631 6.08458

RES. FNCS. G 0.11e28 6.0e3564 -6.255392 -4.068486

RES. FNCS. H -e.0e331 8.0197e1

RES. FCNS. XlIM+XI2MYl1M+Y12M,Z1M+Z12M: 1.94851 6.971180 6.998e97

Xl1 Y11 X12 Y12

MOB. FNCS. A 0.986769 e.999716 8.360471 6.195314

MOB. FNCS. B 6.ee6126 -4.631251

MOB. FNCS. C 0.999948 6.998914 6.e15625 -0.607769

MOB. FNCS. G 6.66504 6.600626 -0.67e784 -0.062604

MOB. FNCS. H -4.60675e 6.619569

MOB. FNCS. X1M. YIM AND ZIM: -1.072550 -0.976229 -0.998097

MOB. FCNS. K.L.M AND J: -6.e196 --. 2787 6.16741 8.N184

Sample output from MANDR.FOR

II
CI

~I
'R W0i

V :
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